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A model of vortex breakdown is presented and its predictions compared with 
the experiments of Sarpkaya (1971). The model is centred about a theory of 
long, weakly nonlinear waves propagating on critical flows in tubes of variable 
cross-section. Although the weakly nonlinear theory must be extended beyond 
its domain of formal validity, many of the experimentally observed features of 
vortex breakdown are reproduced by the model. The description of the time 
evolution of the flow field that is presented requires numerical calculations that 
are not simple, but some important conclusions may be determined by easy 
computations. In  particular, the axial position of a breakdown may be found 
from a very simple equation (10). 

1. Introduction and review 
This paper is a continuation of our study of the interaction of slowly varying 

tube walls with nonlinear waves in rotating fluids (Leibovich & Randall 1973, 
which we hereafter denote by I). Here we direct attention to the case of critical 
flows (see I), and relate the results specifically with the occurrence of the axisym- 
metric form of the vortex breakdown phenomenon (see Hall 1972, which we 
denote by 11). 

The explanation of vortex breakdown is a source of some controversy, which 
is summarized by Hall in his review 11. Hall presents each of the various proposed 
explanations, followed by the extent of its comparison with experimental 
observation and then by a criticism of the proposal. In  the present section, we 
adopt the same format for our own work, coupled with observations on Hall’s 
remarks when appropriate. We confhe attention only to axisymmetric phen- 
omena in tubes (a treatment of non-axisymmetric behaviour by Huang & 
Leibovich will be reported elsewhere). Although connexions with the leading-edge 
vortex breakdown can be made, they are not yet completely clear. 

Proposal 
Vortex breakdown is thought of as a large amplitude wave motion, analogous 
in some respects to a gasdynamic shock wave (not for its suddenness, but for its 
relation with small amplitude waves). The proposal is a development of the 
work of Squire (1962); of Benjamin (1962, 1967), particularly the latter paper; 
and, more explicitly, of Leibovich (1969, 1970). All of these papers are supported 
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by calculations of either infinitesimal or weakly nonlinear waves. The idea 
advanced here is that the small amplitude waves possible in rotating fluids are 
connected with waves of arbitrary amplitude that result from initial disturbances 
of greater strength. Pursuing the gasdynamic analogy a little, we suggest that 
the equations describing weakly nonlinear waves presented in 1 are related to 
the fully nonlinear problem in a way analogous to the relation of Burgers’ 
equation to  weakly nonlinear dissipative gasdynamics. Our calculations for the 
critical case in rotating flows suggest to us that the weakly nonlinear solutions are 
‘better than they should be’ at representing the fully nonlinear phenomena of 
vortex breakdown and gasdynamic shock waves, respectively. We therefore 
offer the weakly nonlinear formulation as a model (not a theory) of vortex 
breakdown. 

Comparison of proposal with experimental observation 

The identification of vortex breakdown as a wave motion is in accord with all 
observations. Although experimental investigations have concentrated on vortex 
breakdowns with stabilized and nearly stationary locations, all observations 
show that the transient development consists of an upstream propagation from 
a downstream source of disturbance. Furthermore, all indications are that the 
region through which the propagation occurs is subcritical, and therefore can 
support long upstream-propagating waves. The flow upstream of a stationary 
vortex breakdown is supercritical (see II) ,  and a positive (adverse) pressure 
gradient exists in the vortex core (11). 

In the present paper, we report calculations based on the critical flow equations 
of I, and choose geometrical parameters and vortex data to simulate the ex- 
periments of Sarpkaya (1971, which we denote by 111). The analysis requires 
that the velocity profiles far upstream of a breakdown position be given, as well 
as the tube wall shape and the kinematic viscosity. No more than one stationary 
breakdown (or ‘trapped wave ’) of finite energy can then exist for the prescribed 
input (the same data are required for the quasi-cylindrical approximation method 
of Hall (see 11)). The amplitude of a trapped wave is uniquely determined by the 
tube geometry and the Reynolds number, and it is found t o  be necessarily large. 
The following results are found (see figure 1). 

(a )  The flow is supercritical upstreamof breakdown and subcriticaldownstream. 
This is consistent with all known experiments. 

(b)  A stationary wave may occur only if the tube diverges in the direction of 
flow, i.e. if an adverse pressure gradient exists on the axis. If the tube contracts 
(favourable pressure gradient) no stationary waves are possible. This is con- 
sistent with all experiments. 

(c) A closed streamline representing the boundary of the trapped wave, or 
recirculating vortex breakdown eddy, is approximately the same size as that 
observed by Sarpkaya (111). 

(d )  The wall pressure behaviour observed by Sarpkaya (111) and by Kirk- 
patrick ( I  965) is qualitatively reproduced. 

( e )  The calculated position of the breakdown depends upon Reynolds number, 
and the calculated position as a function of Reynolds number agrees well with 
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FIGURE 1. Schematic view of a vortex breakdown at Reynolds number of 6000 based upon 
mean axial velocity and tube diameter. 

I11 (figure 2). As the Reynolds number increases, the breakdown is driven up- 
stream, and for high Reynolds number, it must be located near to, or partly 
inside, the portion of minimum duct area. Kirkpatrick’s (1965) and Harvey’s 
(1962) experiments were at  higher Reynolds number than those in 111, and the 
locations of the breakdowns observed are consistent with our findings. 

Criticism 
The principal criticism to be made of the proposal has already been set out by 
Hall (11), who points out that vortex breakdown is a strongly nonlinear phen- 
omenon, so that the present wave calculations, and those of previous workers, 
do not represent a logically consistent explanation. The hypothesis that a strongly 
nonlinear wave exists that is related to those of small amplitude requires a leap 
of faith. Unreported work by Leibovich suggests, however, that wave motions 
of the form proposed here but of arbitrary amplitude may be possible, These 
are non-dispersive and are analogous to those from the Airy shallow-water theory: 
they are of the form $ = $(Y) A(z, t ) ,  where $ is the stream function. Here A 
satisfies A, + co AA, = 0. The ordinary differential equations for q5 are nonlinear 
and singular at  the boundaries and are therefore difficult to treat. In  the sta- 
tionary case co = 0, however, an explicit solution is known. See the citation of 
a communication by Trustrum in Pritchard (1969, p. 457).) 

We note that any consistent theory that is valid in the vicinity of the break- 
down must reproduce the experimentally observed wall pressure behaviour (d). 
Therefore no great claims are advanced by obtaining the correct trends, since 
this follows from a diverging duct simply as a consequence of the Bernoulli 
theorem coupled with the fact that the breakdown partially blocks the duct. 

A shortcoming of the proposal is that reversed swirl velocities occur inside 
the streamline dividing the recirculating breakdown from the flow originating 
upstream. The model is therefore inadequate to describe the flow inside the 
breakdown, even though the behaviour of the axial velocity appears to be 
a promising rough approximation. It has been claimed (Bossel 1969) that re- 
versal of the swirl velocity is a possibility, but this is clearly impossible for an 
essentially steady axially symmetric flow. Reversed swirl is predicted by inviscid 
models, however, as in the cited paper by Bossel. The circulation F is constant 
along streamlines in steady flow and if the vortex is chosen to simulate real 
vortices far upstream one must have F N @ near the symmetry axis (on which 
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$ = 0). Since the boundary of the bubble is also @ = 0, reversed swirl must occur 
inside the bubble when the same functional form for I? is used everywhere. (This 
choice of I? is not required, however. See Leibovich (1968) for an example.) 
Reversed swirl is not allowed, however, because it requires a means of supplying 
a ‘reversed’ torque in a fluid of non-zero viscosity. Furthermore, such flows are 
also unstable according to the stability criteria of Howard & Gupta (1962). 
We therefore conclude that the flow in the interior of a breakdown is controlled 
by viscosity if laminar or by turbulent Reynolds’s stresses if turbulent. 

We conclude these extended introductory remarlis by pointing out that the 
equations used in the quasi-cylindrical approximation method (which we shall 
call QC, for short) first advanced by Hall (1965) and further pursued by Bossel 
(1967) are similar to those used for the present model. The QC model is steady 
and proceeds, in effect by setting K = 0 in the steady form of equations (1) of I. 
Therefore so far as axial gradients are concerned (of which K is a measure), this 
approximation amounts to only the leading term of the long-wave expansions 
of I and Benjamin (1967). The procedure in applying the QC model is to fix 
conditions a t  some axial station, and then compute conditions downstream in 
the step-by-step fashion familiar in boundary-layer theory. The method is not 
restricted by the assumptions of small disturbance that apply to the long-wave 
calculations, but the restrictions on the axial gradients of computed quantities 
are more severe. When axial gradients begin to grow large in the calculations, 
the QC approximation is assumed to fail. I n  a way analogous to the failure of 
boundary-layer theory at  separation, an incipient vortex breakdown is assumed 
to be the cause of failure. We believe that the analogy with boundary-layer 
separation is not appropriate, but that the approximation correctly signals break- 
down because it simulates the change of the flow from supercritical towards 
critical. It thus signals the introduction of upstream wave propagation possi- 
bilities into the physics. A similar failure would occur in a step-by-step calculation 
(which is possible) in a supersonic duct flow. If the flow were driven towards 
sonic conditions, the calculation procedure would fail, exactly as the QC approxi- 
mation fails. One therefore cannot neglect the overwhelming physical conse- 
quences of wave propagation possibilities. We should note further a t  this point 
that the very rapid drop from a supercritical state is consistent with the presence 
of a large amplitude wave, which is expected to decay exponentially fast both 
upstream and downstream. 

The remainder of this paper is devoted to establishing results (a)-(e) above. 

2. Specification of the problem 

wall is described by the equation 
We assume familiarity with the formulation of I .  The duct (dimensionless) 

Y = 1 + 8 h ( ~ ) ,  (1) 

the stream function (to lowest order in the quantities 8, e and cc) in critical flow is 
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and the ‘circulation’ is 

= FS(Y) +YO(Y) [WW + € 4 6  t)l, 
where A is governed by the equation 

A,  = C[clAA,+ ~ 2 A ~ ~ ~ l +  Sic1(fA), + c5PA 

(see I, equation (18)). 
The functionf(x) is related to the wall shape by 
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(3) 

(4) 

where the formula determining w1 is given in 1, equation (11). To be definite, we 
assume that 0 < h < 1, and therefore (since w1 will be shown to be negative for 
Sarpkaya’s (1971) experiments) take 

f = [2w1(h- l)]*. 

Equations for the constants c1 and c2 appearing in (4) are given in I, while the 
formula for c5 is given in Leibovich & Randall (1971) (where one must replace c3 
by c5 to translate the notation to that of the present paper). 

The functions W(y), I?&) and h(x) are assumed to be given. To simulate the 
experiments of 111, me select W = 1 and 

Fs = K( 1 - e-14Y) (6) 

and in order for this flow to be critical as required here K = 0.4323. (This repre- 
sents a slight departure from our normalization of velocities. Here velocities 
are referred to the axial velocity rather than to the maximum swirl velocity. 
It makes little difference to the numerical values, since the maximum swirl 
in critical flow for this vortex is 1.03.) The form of (6) and the factor of 14 in 
the exponent are obtained from the measurements in I11 (and also from Harvey 
1962). The value of K is obtained by numerically solving equation (7) of I for 
the critical case co = 0. It may also be inferred from calculations in Leibovich 
(1970, p. 810, where a misprint must be corrected: K = ~ ~ a - 4 ,  and KO” in ( i6)  
should be replaced by K ~ ) .  Sarpkaya’s (111) swirl parameter is roughly related 
to K b j  the equation !2 = T K ,  so we deal with i2 + 1.36. 

Sarpkaya’s test section consisted of a conically tapered tube joined (at the 
upstream end) to a rounded throat 1-5 in. in diameter. The downstream end was 
connected to a straight tube 2in. in diameter, and the tapered tube was loin. 
in length. Therefore, the area change parameter 

max diameter 
min diameter 

S=( ) - 1 = i .  

Our computer solutions of (4) for the wave shape are of initial-value type with 
initial data given on the entire real z axis. A convenient analytical representation 
of the wall variation h(x) suitable for all 1x1 < a3 that could provide a reasonable 
approximation to the diverging portion of Sarpkaya’s tube was desired. The 
profile chosen was 

h(x) = h(az) = i[l + tanh (a&z’/b)], (7) 
32-2 
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where b is the minimum (dimensional) tube radius and 2' is the dimensional 
axial distance. For convenience, we write zb = z'/b. The centre of the test section 
was chosen as the origin for zb ,  and the parameter as* in (7 )  was fixed by setting 
h = 0.99at zb = 6.67, so that ad = 0-3445. Other wall representations were tried, 
and the position of breakdown was found to be sensitive to the wall shape. The 
results obtained are given by Randall (1972). 

3. Heuristic consideration of the location of trapped waves 
In I it is shown that an equation of the form (4) may describe wave amplifica- 

tion due to geometrical constraints, and dissipation due to viscosity as described 
by the last term in (4) is also present. A stationary wave in equilibrium is a 
possible outcome of the competition between amplification and dissipative 
effects, and such a 'trapped wave ' (since the analysis shows that equilibrium is 
possible only a t  certain locations) is sought here. 

A good approximation to the possible locations of trapped waves can be found 
by considering the wave momentum M and energy E ,  where 

Integration of (4) shows that, if A + 0 as IzI -+ 00, 

M = MOePcst, (8) 

where Ho is the initial momentum. Since c5 < 0, M + 0 as t increases, This does 
not necessarily imply [ A ]  -+ 0 everywhere, of course. By multiplying (4) by A 
and integrating by parts, we find that the rate of change of energy is 

dE 
dt (9) 

The coefficients of &A2 varies slowly with z. If A is highly localized, as in a solitary 
wave, we expect that a good estimate of the wave equilibrium position z, may 
be found by setting 

The assumptions leading to (10) and the accuracy of its predictions must be 
verified by a complete transient analysis of the wave motion. It will be seen later 
that (10) is well supported by such a study. 

The following coefficients were computed (see Randall 1972) for the vortex 
of 8 2 to simulate the experiments of I11 and Harvey (1 962) : 

ash, fz(azc) + 2Fc5 = 0. (10) 

~1 = -0.3838, C, == 0.0162, ~5 = -96.631, 01 = -2.8314. 

Therefore a solution of (10) is possible only iff, < 0, and since w1 < 0, this can 
occur only for a tube diverging in the flow direction. 

Figure 2 was constructed from (10) using these results and the parameters of 
§ 2,  together with the corresponding results from Sarpkaya's paper (111). The 
agreement is encouraging. 

The speed of a finite amplitude wave depends upon wave amplitude. Therefore 
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FIGURE 2. Wave equilibrium position, measured from centre of flaring region, us. Reynolds 
number. - - -, taken from Sarpkaya’s (1970) data; -, predicted by present model. 

such a wave will not come to rest at  the equilibrium position unless it has the 
‘correct’ amplitude, u,. Write (4) in the form 

A,  = CIG~fAz+EICIAA~+C~Azzz]+ [aG:c, f,+pcJA 

and consider its behaviour in the vicinity of equilibrium. If we suppose f to be 
replaced by its value f, a t  equilibrium, the first term on the right is seen to cause 
a translation at  the constant speed - cl&fe. The last term represents amplifica- 
tion or decay which, at equilibrium, should vanish. Neglecting the last term then, 
the equation is that of Korteweg & de Vries (1895), and it has the localized 
solution 

c a  + 
A = aesech2( [z] [z-z,+st] 

where s = +ea,cl + clG4fe (12) 

and a, is the constant wave amplitude. It will be seen later that the solitary 
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wave (1 1) conforms closely with computer solutions of (4) for large time. If the 
wave is to remain fixed, s = 0, or 

€ae = - 3S*fe. (13) 

In  a tube that is initially straight, then flares out and becomes straight again 
as one advances in the direction of the flow, f, decreases from zero to a minimum 
and then increases to zero again. As long as 

max [ -fz] > 2c5,&/c,olS3 (14) 

equation (10) has two real solutions. Only the upstream solution is stable, 
however, in the sense that waves passing through it experience a restoring ten- 
dency owing to the amplitude-speed behaviour of nonlinear waves. Upstream 
of the forward equilibrium point waves decay, while downstream of it they 
amplify. The (downstream) equilibrium point is unstable for analogous reasons 
since amplification occursupstream anddecay downstream. If the inequality ( 14) 
is not satisfied, wave decay occurs everywhere, and no equilibrium is possible. 

Using parameters corresponding to Sarpkaya’s (1971) experiment, the plot 
of equilibrium wave amplitude versus Reynolds number shown in figure 3 was 
obtained. As one can see, these amplitudes are quite large, too large in fact for 
the theory leading to (4) to be valid since it requires that the amplitudes be small. 
As was pointed out by Leibovich (1970), one has to use a large amplitude theory 
to model vortex breakdown with a solitary wave in order to obtain the zones of 
recirculation that are observed. Thus the small amplitude analysis does not 
supply a self-consistent theory. Nevertheless, it does provide a useful model 
containing all of the important effects of wave steepening due to nonlinearity, of 
dispersion and of the influence of tube geometry on wave speed and amplification, 
and the influence of dissipation on wave decay. 

4. Numerical solutions for trapped waves 
Calculations of solutions of (4) using the parameters of $ 9 2  and 3 have been 

carried out in order to test the heuristic considerations discussed above. The 
preliminary transformation T = st was used. The initial-value problem was solved 

R e x  10-3 

FIGURE 3.  Equilibrium wave amplitude us. Reynolds number corresponding to figure 2. 
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T 
FIUURE 4. Absolute value of wave momentum vs. time for waves governed by equation (4, 
with A(z ,  0) given by (15); Re = 6000. ---, correct momentum; - , computed 
momentum. 

for several different initial conditions using the numerical algorithm given in 
the appendix. In  order to reduce computing time, the heuristic equilibrium 
values of amplitude and equilibrium position were used as guides in selecting 
initial data. For the purposes of illustration, the Reynolds number throughout 
the remaining discussion will be assumed to be 6000, for which the equilibrium 
amplitude sa,is - 5.3712. For t = co, theparameter EU, determines the magnitude 
of the flow disturbance, and it is uniquely fixed in terms of the Reynolds number 
and tube geometry by (13) and (10). The choice of E or a, separately, however, is 
arbitrary owing to the arbitrary distinction made between them in the theory 
(see Leibovich 1970); once one of these quantities has been chosen, a will also 
be fixed. Two practical requirements have to be met when choosing e and a,. 
One must have e small enough to give a fast momentum relaxation and a, should 
not be so large that poor spatial resolution of the numerically determined wave 
pattern results. In  the interest of avoiding prohibitive computing expense while 
obtaining accurate results, a, was chosen to - 2.5, fixing E and a: at 2.1485 and 
0.2350, so that z, is - 2.0925. The equation describing the first initial distribution 
to be discussed is 

A(z, 0) = a,sech2([c,a,/12c,]~ (z-z,)]. (15) 

The computation using (15) as the initial wave distribution was run until 
it was apparent that solitary-wave trapping was indeed occurring. As a check 
on the accuracy of the numerical solution, the wave momentum of the numeric- 
ally determined wave pattern was monitored periodically and this was compared 
with the exact momentum decay, as shown in figure 4; the disagreement between 
the two curves is never more than 2%, which is what one should expect for the 
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FIGURE 5. Evolution of solitary wave governed by equat,ion (4), corresponding t.0 
figure 4. (a)  T = 0. ( b )  T = 61.7. (c) T = 123.4. 

grid spacings being used here. Figure 5 shows the computed wave evolution; 
figure 6 shows the trajectories of the minimum of the solitary wave developing 
in figure 5, the leftmost non-zero maximum and the minima of the small oscilla- 
tions accompanying the solitary wave (which nearly always occur in solitary- 
wave evolution governed by the Korteweg-de Vries equation (Zabusky 1968)) 
and figure 7 shows how the energy of the evolved wave pattern varies with time. 

Since the wave distribution must undergo momentum decay, the initial 
solitary-wave distribution must lose momentum. This caused its amplitude to 
decrease so that the solitary wave shifted to the right and the entire wave 
distribution suffered an initial loss of energy. Owing to this rightward motion, 
the solitary wave entered an amplification zone in the tube causing its amplitude 
to increase, and the energy of the wave distribution started to increase. After 
sufficient amplification, the centre of the solitary wave moved back very slowly 
to the left and came to rest about 0.25 axial units t o  the right of its initial position. 
While this was happening, the requisite momentum decay was accomplished 
by the generation of a positive shelf which stretched between the right-hand tail 
of the solitary wave and the train of small oscillations moving to the right; the 
energy of the wave distribution increased with time a t  a decelerating rate and, 
when the computation was terminated, the energy appeared to be approaching 
a constant. The solitary-wave amplitude is - 2.57 and its form is very close to 
that o fa  Korteweg-de Vries solitary wave with the same amplitude, as shown in 
figure 8. 

With the initial distribution used in the computation just discussed, wave 
trapping occurs rapidly because the initial condition is almost identical to  the 
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FIGURE 6. Trajectories of minima for wave evolution in figure 5 (solid curves). 
Broken curve is trajectory of leftmost positive maximum. 

FIGURE 7. Wave energy vs. time for wave evolution in figure 5. 

FIGURE 8. Solitary-wave forms. -, Korteweg-de Vries profile with a = - 2.57; 
0, final solitary-wave profile in figure 5. 
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expected final form. In  order to see whether other initial datamay lead to trapping 
the initial condition (15) was shifted and the following distribution was considered : 

A(x, 0) = - 2.5 sech2 ( ~ - 2 ~ -  2). 

When this initial distribution is used with the Korteweg-de Vries equation, two 
permanent left-moving solitary waves will evolve, with the larger one always 
leading the smaller one (Zabusky 1968). In  view of this and the computation just 
discussed, one can gain some idea of the initial evolution period when (4) is solved 
with (16) as initial data. Since the initial distribution is concentrated in an 
itmplification zone, the wave energy will undergo an initial increase. The initial 
distribution is expected to degenerate into two solitary waves, a large one which 

(16) 
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will move to the left into the decay zone left of the equilibrium position and a 
smaller one which initially should move to the right because of its small ampli- 
tude. The leftward-moving solitary wave is expected to decay, lose amplitude and 
be swept back to the right while the right one is expected to amplify andeventually 
reverse direction. and move to the left. This will result in a collision of the two 
solitary waves and a nonlinear interaction between them that cannot be guessed 
without computation. 

Figure 9 shows the wave evolution from the initial distribution given by (16); 
figure 10 shows the trajectories of the minima of the two solitary waves, the 
leftmost positive maximum, and the minima of the small right-moving oscilla- 
tions accompanying the solitary-wave evolution. Figure 11 shows the wave 
energy as a function of time. The initial solitary-wave development proceeded 
as expected, and the wave energy showed the anticipated initial increase. Owing 
to the decay of the initially larger, left solitary wave, the energy growth rate 
decreased. While the left solitary wave was decaying, the right one was amplifying 
and soon became large enough to cause the wave energy to increase again. The 
first interaction of the solitary waves occurred to the right of the equilibrium 
position. There was an exchange of energy between the two waves in which the 
left one gained energy a t  the expense of the right one, causing them to move 
apart again. The right solitary wave moved only a short distance to the right 
before moving back to the left again. In  the meantime the left solitary wave moved 
back into the decay zone, so that by the time the next collision occurred, the 
centres of the two solitary waves were at approximately equal distances on either 
side of the equilibrium position. The left solitary wave gained energy from the 
right one again and a cyclic process began in which the two waves would 
periodically collide and move apart. Three of these cycles were observed before 



508 J .  D. Randall and S.  Leibovich 

i 
\ 
i I 

z 

FIUUBE 10. Trajectories of minima, for wave evolution of figure 9 (solid curves). 
Broken curve is trajectory of leftmost positive maximum. 
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FIGURE 11. Wave energy v8. time for wave evolution in figure 9. 
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FIUURE 12. Eigenfunction q&(y) for the vortex (6) of $2. 

the computation was terminated. Once the cycles had started, the oscillations 
of the wave energy became much less severe. As before, the required momentum 
decay was accommodated by a long positive shelf between the right solitary 
wave and the small right-moving oscillations. 

5. The ultimate steady vortex breakdown flow 
Figure 12 shows the eigenfunction $,(y) corresponding to W = 1 and the 

vortex (6). From this result, equation (5) and the parameters 6, a and S appro- 
priate to Sarpkaya’s experiment as discussed in $92 and 3, a stationary-wave 
distribution A may be found and a steady flow field may then be constructed 
from (2) and (3). 

Of the two steady distributions of A obtained in $4, the first one is chosen for 
the model. Pairs of axisymmetric vortex breakdowns have never been observed 
in a variable-area tube; only single (steady) breakdowns have been observed. 
Single breakdowns may be selected in diverging tubes since the initial develop- 
ment consists of an upstream journey through a zone of decay. The wave motion 
thus passes through a filter. Presumably only the dominant downstream dis- 
turbance can survive to reach a point of stable equilibrium. Boundary-layer dis- 
placement effects may also play a role in selecting single trapped waves by 
shaping the (nominal) duct wall. 

The streamline pattern in the neighbourhood of the breakdown constructed 
from figures 5 and 12 is shown in figure 13. The axial and radial co-ordinates 
in figure 13 are both referred to  the tube radius scale b. As one can see from this 
figure, the theory predicts a well-defined cell of recirculating fluid which is 
symmetrical around the tube centre-line and occurs in the neighbourhood of the 
equilibrium position. 

In  his 1970 report, Sarpkaya presents a sketch of the contour of a ‘representa- 
tive breakdown bubble ’ which spans an axial distance of about 0.75 tube radii 
and a radial distance of about 0.32 tube radii (see 11, figure 7). Considering that 
a small disturbance fiheoryis being used to model a large disturbance phenomenon 
the agreement between Sarpkaya’s sketch and figure 13 is quite good. Sarpkaya’s 
bubble is more elongated and less symmetrical in the axial direction than the 
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FIGURE 13. Streamline pattern in neighbourhood of equilibrium position using final wave 
profile in figure 5 and radial structure function in figure 12. Numbers next t o  streamlines 
are stream-function values. 
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FIGURE 14. w, = centre-line axial velocity/far upstream centre-line axial velocity. 
d = distance, in tube radii, upstream of vortex breakdown nose in figure 13. -, theory; 
_ _ _  , representative of Sarpkaya’s (1970) observations. 

bubble predicted here and it has no rear stagnation point because fluid empties 
out of the rear of the bubble and spirals away in a non-axisymmetric manner. 
This, of course, is a feature that the nearly inviscid, axisymmetric model cannot 
predict. The small right-moving oscillations observed in the solitary-wave 
computations are much too small to account for the periodic motion that 
occurs behind the observed breakdown bubbles. 

Figure 14 is a plot of the centre-line axial velocity normalized with respect 
to its undisturbed value far upstream as a function of the axial distance up- 
stream of the breakdown. The solid curve is the theoretically predicted one and 
the broken curve is representative of Sarpkaya’s observations. Not only are the 
basic trends the same, but the numerical values are close. Sarpkaya’s swirl-angle 
measurements were made ‘a short distance ahead of the breakdown’. The 
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FIGURE 15. Swirl angle (d) vus. radius just upstream of breakdown region in figure 13. 
-- , theory; - - -, Sarpkaya (1970). 

theoretical (solid) curve of swirl angle versus tube radius in figure 15 was obtained 
by taking the inverse tangent of the ratio of swirl velocity (I?/.) to axial velocity 
( 2 Y V )  just upstream of the calculated bubble shown in figure 13. 

Wall pressure measurements by Sarpkaya (111) and Kirkpatrick (1965) are 
presented in terms of a pressure excessratio ( p  -pu)/#pWz,wherepuis the pressure 
far upstream of breakdown and %is the mean axial velocity there. Moving 
downstream from the upstream region, the pressure excess ratio is initially zero 
but increases slowly as one approaches the breakdown, where it reaches a local 
maximum, decreases rapidly through the breakdown region and then slowly 
increases to a final constant value in the downstream region. Using the present 
model, one can find with the aid of Bernoulli’s equation that the first-order 
estimate of the pressure excess ratio is given by 

where f - = f( -a). Equation (5) indicates that f - is the largest value off and 
one can see from figure 12 that &( 1) is negative. Therefore (17)  predicts that the 
pressure excess ratio far upstream vanishes, and changes most rapidly in the 
neighbourhood of the breakdown, where A varies much faster than f. It is 
generally negative downstream, however, and this does not agree with observa- 
tion. The discrepancy may be traced to the fact that deceleration due to the 
divergence of the tube, which is of 0 ( 6 ) ,  is not accounted for in (2) and (3).  The 
O(6)  term in the stream function is 6hO,(y), and when this term is included in the 
pressure excess equation, one finds that 

( p  -p,)/&W2 = 2&,( 1) [8*(f- - f )  - €A] - 26hO;( 1). (18) 

&(l) has a small numerical value and O(6)  terms involving it are neglected in 
this equation. The numerical value of O;(l) is - 1.15. With this modification, 
the calculated pressure is in qualitative agreement with experiment, as one may 
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FIGURE 16. Wall pressure distribution caused by vortex breakdown 

in a diverging tube, calculated from the present model. 

see from figure 16, but exhibits a highly exaggerated response to the presence of 
a trapped wave. 

By varying the Burgers vortex exponent in ( 6 ) ,  one can vary the swirl para- 
meter K (or C2)andobtain afamily of equilibrium position curves similar to those 
in figure 2. As shown by Randall (1972), choosing smaller values of the exponent 
results in larger values of K and this shifts the equilibrium position curve to 
the left. Sarpkaya (111) observed similar trends. The theory would also predict 
a family of swirl-angle curves similar to figure 15, but for axisymmetric vortex 
breakdowns, Sarpkaya obtained only one such curve for all the values of SZ 
generated. The discrepancy is most likely due to the fact that the support-flow 
circulation was chosen arbitrarily with no regard for the influence of viscosity 
upon the exponent in (6). An analysis of vortex cores by Batchelor (1964) 
indicates that the exponent is inversely proportional to viscosity. The present 
model does not allow for this. 

As one can see from figure 13, reversed axial velocities occur inside the break- 
down bubble as indeed they must in order to form the cell of recirculating fluid. 
Figure I7 shows a plot of the most severe radial variations of axial velocity taken 
on the plane perpendicular to the tube axis near the eye of the bubble, using 
equation (2) and the numerical da.ta. Such flow reversals are an essential feature 
of vortex breakdown observed experimentally. What is not reported experiment- 
ally, however, is the reversal of tangential velocities shown in figure 18, which 
was obtained using equation (3) a t  the eye of the computed bubble. 

Figure 1 shows an overall view of the flow calculated for Be = 6000. The velocity 
in the straight section far upstream of the breakdown may be calculated from 
(2) and (5) to be 

w = w+2e;[2qw,l-j~ 
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FIQTJRE 17. Axial velocity us. radius near the eye of the breakdown bubble in figure 13. 
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FIGURE 18. Tangential velocity vs. radius near the eye of the breakdown bubble in figure 13. 

and is supercritical. In the straight section downstream of the breakdown, the 
6: contribution vanishes. Deceleration of O(6) due to the enlarged tube area 
occurs, however, and may be found from I to produce the (subcritical) axial 
velocity 

= w + z6e;(y), 

where the problem for 8, is given in I. 

This work was supported by NASA grant NGL-33-010-042, monitored by the 
Lewis Research Center. 
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Appendix. Numerical algorithm for solving the wave equation 
The numerical procedure for solving (4) involved using the following finite- 

difference representation of that equation, modelled on one used by Zabusky 
(1968) for solving the Korteweg-de Vries equation: 

1 - (3A:++1-3A:+A:+_-A:-,) 
4hr 

= (C1/4h,) (A:+1 f A:?;) (&+I - A$+' + ~ 4 - 1 -  A$;) 

-k ( C z / h , , )  (&+I - 3.4: -k 3Ai-1 f 4 2 )  

+ (SQC1/2€hz) (fi+J$+, -fiA"i+l+fi-lA:-l - fi&l;;t_12) 

+ (&/4€) (A",l + A$++1+ A:-l +A:?;), 

where fi and A: are the value off at the ith spatial grid point, the computed 
value of A(z,  t )  a t  the Zth time level and ith grid point, and 

h, = s(t,+, - t l )  and hz = zi+l - zi. 

For details of the computational procedure, discussions of errors, and numerical 
stability see Randall (1972). Owing to the trapping of the solitary waves, the 
left-hand end of the spatial interval (if it is properly chosen) need not be adjusted 
as the computation proceeds, but owing to the rightward movement of the small 
oscillations and the expanding positive shelf between the oscillations and the 
rightmost solitary wave, theright-hand end of the spatial interval has to be moved 
to the right occasionally. The amplitude of the oscillations passing through the 
rightmost grid point was never allowed to be more than 1 yo of the solitary-wave 
amplitude. The initial spatial interval was 37 axial units long, running from - 7 
to 30. 

The spatial grid size used in the computations discussed in this paper was 0-1 
and the temporal grid size was assigned its maximum allowable value for 
numerical stability: 

h, = &L1h: = 0.01543. 
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